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Abstract: Industrial manufacturing organizations and production logistics 
organizations have generated significant amounts of data from sensors, time 
series, inline cameras, images/videos, and enterprise systems and process logs. 
(Han et al., 2018) This has made it possible to improve the operations from 
post-hoc to predictive. (Achouch et al., 2022) The objective of this organized 
review is to collect the existing knowledge and information on the architecture, 
algorithms, and methods for multimodal analytics, and this organized review 
has been designed and developed for three major purposes: maximizing 
equipment effectiveness, minimizing scrap and rework, and maximizing 
energy efficiency. The guidelines for systematic review PRISMA 2020 are 
followed, including literature from 2020 to 2025 on predictive maintenance, 
anomaly detection, computer vision inspection, process mining, digital 
twinning, forecasting, and optimization. (Systematic review of predictive 
maintenance practices in the manufacturing sector, 2025) The study has found 
that data architecture is the starting point for scalability, multimodal analytics 
can reduce false positives and increase the effectiveness of the early warning 
system when each modality measures different failure processes, 
improvement of KPI can be optimized when the result of decision is included 
in the workflow and decision-making, and forecasting and decision models are 
perceived as solution space for optimizing energy. (Dutta et al., 2025) The 
study is associated with generalization, improvement of KPI, and decision 
models, which are associated with sustainability and optimization of 
throughput, quality, and energy. (Kaushal & Chakrabarti, 2025) The next part 
of this chapter will include the discussion on the implementation checklist and 
research agenda. The next part of this chapter will include the discussion on 
the relevance of the study and the systematic review carried out for the 
journals of the first quartile of logistics and operations research journals. 
Keywords: Industry 4.0, Multimodal Analytics, Overall Equipment 
Effectiveness, Predictive Maintenance, Defect Detection, Scrap Reduction. 
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1. INTRODUCTION 
In recent times, the production logistics area 

has been impacted by the constant generation of data. 

There are various machines used in the current 
production process. These machines have various 
sensors such as vibration sensors, current sensors, 
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and temperature sensors. These sensors generate 
data. In addition, images can be obtained through 
inspection cameras. Log data can be obtained 
through MES/ERP systems, machine controllers, or 
human-machine interfaces. These three types of data 
represent different dimensions of reality. Signals 
represent physical reality, images represent results, 
while log data represents states and decisions. These 
three types of data represent a complete reality. 
These three types of data are key factors that impact 
important logistics performance indicators such as 
stable lead times, internal service levels, and schedule 
performance. OEE is an important tool used to 
evaluate the efficiency of the machines used in the 
production process. OEE is used to evaluate the 
efficiency of the machines used in the production 
process because of the following reasons: OEE has 
three factors that impact the efficiency of the 
equipment used in the production process. These 
factors are Availability, Performance, and Quality. 
(OEE Factors: Availability, Performance, and Quality, 
n.d.) However, OEE has a disadvantage as an outcome 
variable. (OEE: A Controversial Figure, 2025) In 
order to increase the OEE, it is important to increase 
the factors that impact OEE. There are three ways 
that analytics can be used to increase OEE: 
forecasting and warning, root cause analysis, and 
optimization. (Saretzky et al., 2025) The performance 
of deep learning models has been considerably 
advanced with regard to their capacity to model 
multivariate time series data (Tang et al., 2023), to 
identify anomalies (Zamanzadeh Darban et al., 2024), 
and to combine multimodal data (Zhao et al., 2024). 
Success in operations depends on many factors 
besides analytics. Although it is a different scenario 
from the benchmark scenario in which the data is not 
clean or asynchronous, there is a lack of labels, and 
the decision process is restricted due to safety, 
compliance, and cost issues in taking actions on the 
results of the prediction models. The high-accuracy 
detector will be ineffective in the deployment 
scenario in which there is an issue of alert fatigue; it 
will be ineffective in handling the downtime of 
cameras and sensors; and it will be ineffective in 
utilizing the results of the prediction models in the 
operation, maintenance, and quality management 
process for taking actions on the results of the 
prediction models. There is a need to add value-
aligned metrics in the results of the evaluation 
process. The aim and objective of conducting this 
literature review are as follows: The aim of 
conducting this literature review is to create 
literature that is most relevant to the audience. This 
includes creating literature on recent literature from 
2020 to 2025. This includes creating an integrated 
framework that includes data architecture, 
multimodal modeling, and decision integration with 
results such as OEE, scrap, and energy efficiency, as 
per the aim and objective of conducting a literature 

review, as shown above. In order to create a literature 
review that is most relevant and useful for a Q1 
audience, who are most likely individuals in the field 
of logistics and/or operations management. 
 

2. AIM AND OBJECTIVES 
Aim: Systemically conduct a literature review from 
the year 2020 up to 2025, regarding the 
incorporation of high-volume time series, image, or 
process/event data for the purpose of optimizing 
OEE, scrap, and energy efficiency in a given 
environment. 
Objectives: (O1) Identify the data architecture and 
data governance patterns; (O2) Synthesize the 
modeling techniques and address the constraints; 
(O3) Identify the mapping of the models and the 
interventions/KPIs; (O4) Develop the research 
agenda for causality, cross-site generalization, and 
sustainability-aware multi-objective optimization. 
 

3. METHODOLOGY (PRISMA) 
This systematic literature review is based on 

the PRISMA 2020 protocol. The process for 
conducting the systematic literature review follows 
the following protocol: guided search, screening, data 
extraction, and synthesis. The process for conducting 
the systematic literature review is geared toward 
extracting relevant literature for an operations-
related evidence map rather than for algorithmic 
variations. 
 
Research Questions: 
➢ What architectures and pipelines are used to 

ingest, synchronize, and govern multimodal 
industrial data? 

➢ What types of models are used for forecasting, 
anomaly detection, fault prediction, defect 
detection, and optimization, and how are these 
models validated? 

➢ How does the model integrate the results for 
maintenance, quality control, scheduling, and 
energy optimization, and what KPIs are used? 

➢ What are the unknowns for transferability, 
causal attribution, and deployment? 

 
Inclusion Criteria for Literature Review 
➢ The year of publication will range from 2020 to 

2025. 
➢ The literature will be relevant for industrial 

manufacturing or production logistics. 
➢ The literature will have at least one modality, 

preferably multimodal fusion. 
 
Exclusion Criteria for Literature Review 
➢ Literature not relevant for industrial or 

operational scenarios. 
➢ Data Extraction Process: 

o Modalities and sampling; 
o Data preprocessing and synchronization; 
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o Model types and validation, especially time-
based; 

o Deployment; 
Integration for decision; 

o Integration for KPIs. 
 
Quality Appraisal Criteria 

Operational risk assessment issues such as 
data leakage, unrealistic splits for training and testing 
data, unrealistic robustness evaluation, unrealistic 
budget reporting for alerts, etc. (Vieira et al., 2025) If 
causal attribution cannot be supported, KPIs are 
associated. 
 
5. Thematic Synthesis (2020-2025) 
5.1 Data Architecture, Synchronization, and 
Governance 

A research project in this area should be able 
to have semantics for asset ID, part/lot ID, and 
recipe/state ID; in addition, a research project in this 
area should be able to have a good method for 
timestamp synchronization for effective data 
merging based on relevant operations such as parts, 
lots, batches, or time windows. A research project in 
this area can be partitioned using edge cloud 
partitioning for data management. (Plan for Edge 
Processing in Data Management, 2024) 
Preprocessing of sensor data for cleaning, 
compression of images for filtering, or inference for 
latency-critical detection should be included in a 
research project in this area. A research project in this 
area should also be able to leverage the cloud for 
longer-term storage and training, in addition to 
cross-line benchmarking for robustness in the 
presence of intermittent connectivity. Some of the 
best practices for a research project in this area 
should be able to monitor data quality in terms of 
missing values, outliers, and data drifts; in addition, 
metadata management for audit trails and access 
control based on role should be included in a research 
project in this area. (Tu et al., 2023) This is important 
since the output of the research project in this area 
should be used for determining product quality hold 
times, maintenance, or even commitment. Good data 
governance should be assumed for most research 
projects in this area; however, evidence-based 
research in this area for practitioners indicates that 
monitoring and version control should be considered 
important for a research project in this area. (Li et al., 
2024). It has been considered that the development 
of a feature store/embedding store can be a potential 
solution that can solve the redundancy issue with 
respect to engineering different types of problem 
domains. (Li et al., 2023) In the case of multimodal 
data, it can be useful in representing images/time 
windows that can be used later on. (Liu et al., 2025) 
The only issue with the usage of such stores in a 
production environment is that there is a possibility 

that the features can become stale due to changes in 
the equipment/sensors. 
 
5.2 Multimodal Representation Learning and 
Sensor Fusion 

The multimodal fusion of the data has the 
potential to be robust if the types of data are of 
different nature and are complementary with respect 
to failure modes. In the case of the manufacturing 
domain, it has been discussed that the time-series 
data obtained from sensors has the potential to be 
used in the detection of the start of degradations, 
images have the potential to be used in the detection 
of the manifestation of defects, and event data have 
the potential to be used in the detection of contextual 
changes such as recipe changes, operator actions, and 
batch numbers. The benefits and problems of 
multimodal fusion have been discussed in the survey 
on deep multimodal fusion. The problems discussed 
include representation, alignment, tolerance of 
missing modality, and uncertainty, as discussed in 
Zhao et al., (2024). The most commonly used fusion 
techniques used for data fusion in an industrial 
scenario are early fusion, attribute fusion, and late 
fusion. (Liu et al., 2025) In terms of the GO approach, 
late fusion is the most commonly used technique, 
owing to the ease of validation of each model. 
(Effective Techniques for Multimodal Data Fusion: A 
Comparative Analysis, 2023) The robustness of the 
missing modality detection feature of the system is 
possible. The feature fusion technique is the most 
accurate of the three techniques. However, the 
accuracy of feature fusion could be extremely 
sensitive to changes in the data distribution. It could 
be extremely difficult to audit, as the representation 
of the data is a fusion of all the modality data. Other 
challenge that has to be addressed is alignment, since 
images are part-based, whereas sensors are 
continuous in nature. The majority of the research 
has been done with event anchors such as part ID, 
barcode scan, triggers from different stations, and 
cycle counters for alignment of the sensors with the 
parts. Some have also used a batch level of sensors if 
alignment at a part level is not possible. The form of 
alignment, which is used, has the potential to define 
the form of the mechanism, which can be learned. For 
example, part-level alignment has the potential for 
learning direct defect predictions, while batch level 
has the potential for learning drift detection and 
energy-aware scheduling. Explainability of the 
Fusion Mechanism Explainability of the fusion 
mechanism has the potential for use in operations, 
but it is important to note that it has the potential for 
explaining the mechanism, which can be controlled. 
Although it is possible for the attention-based models 
to have the potential for learning and identifying time 
windows and image regions, which are of importance 
in making predictions, it is important to ensure that 
the operations staff have the potential for 
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understanding and relating the explanation 
mechanisms to factors, which can be controlled. From 
the above, it is evident that models, which are hybrid 
and have the potential for integrating deep features 
and structured variables such as recipe, machine 
state, operator shifts, and batches supplied, are likely 
to have preference. 
 
5.3 Forecasting for Throughput Stability, OEE 
Planning, and Energy Management 

The development of multivariate time-series 
forecasting methods based on deep learning has been 
a significant step forward, as more industrial 
applications emerge. Surveys of the literature on this 
subject have identified non-stationary, exogenous 
factors and long-term dependencies as important 
features of the data (Tang et al., 2023). Forecasting is 
an important task in industrial production logistics, 
as it adds value to the enterprise by supporting 
associated activities that help to avoid variability 
amplification and increase internal service levels. 
OEE forecasting may be viewed as a combination of 
Availability, Performance, and Quality forecasting 
under expected conditions. Relevant features derived 
from MES systems include downtime causes, cycle 
time, and shift-related variables, which are used to 
improve forecasting through sensor fusion in 
conjunction with the operating context (Dobra et al., 
2023). Fusion-oriented methods examine the 
integration of various factors to further increase the 
stability of OEE forecasting under changing 
conditions (Zhou et al., 2025). Energy forecasting is 
used for peak shaving, scheduling, etc. Surveys of the 
literature on energy efficiency have found that 
analytics, as a tool, is not enough to deliver long-term 
benefits; they require integration with operating 
processes, decision-making authority, and 
improvement activities (Batouta et al., 2023; Schmitt, 
2025). Forecasting is increasingly viewed as an input 
to a policy optimization problem. The validation of a 
forecasting model is essential for establishing 
trustworthiness. In this regard, time-split and rolling 
origin validation would be more apt, considering 
real-world situations where regime changes are 
frequent. Regime changes could be related to 
maintenance cycles, product mix, and policy changes. 
In multimodal forecasting for image-based 
exogenous contexts, there would also be a need to 
consider image non-availability or camera non-
operational situations, which would be relevant to 
the plant scenario. 
 
5.4 Anomaly Detection and Predictive 
Maintenance for Availability Improvement 

Anomaly detection is one of the key areas for 
improving availability. Industrial anomalies vary. In 
multivariate anomaly detection surveys, there is 
emphasis on point anomalies, contextual anomalies, 
and collective drift anomalies. It is also established 

that there are no constraints related to evaluation 
protocols. The most informative evaluation protocols 
provide lead time, false alarm rates at a given budget, 
and results from actions taken. In predictive 
maintenance models, there would be a progression 
from sensor-only models to context-aware models. In 
context-aware models, there would be inclusion of 
operational state from log data to prevent false alarm 
generation for expected transient behaviors like 
startup or changeover. In addition, there could be 
inclusion of modalities like vision and acoustic to 
distinguish noise from degradation. One of the 
reasons for multimodalization could be related to the 
need to prevent false positives and improve root 
cause specificity. Digital twins could be useful for 
formalizing contexts, constraints, and interventions. 
In digital twin surveys, there is a consensus that a 
digital twin would be a structured representation of 
physical assets and related data streams and models 
to support simulation and interpretation. In 
maintenance, digital twins would be useful for what-
if analysis to determine which option minimizes 
impact on production schedules and downstream 
logistics commitments. Predictive maintenance has 
second-order effects on performance and quality. The 
timing of the maintenance can have an effect on 
changeover time or stability after the changeover. 
The latter has implications for the integration of the 
problem of maintaining the equipment in the larger 
problem of production logistics. The latter has 
further implications for the role of multi-objective 
evaluation in OEE improvement initiatives. 
 
5.5 Vision-Based Defect Detection and 
Scrap/Rework Reduction 

Deep learning is the current mainstay in 
vision-based inspection systems for defect detection, 
localization, and segmentation. Surveys have shown 
significant progress and challenges in dealing with 
class imbalance issues, fewer available defect classes, 
and domain-related issues such as illumination 
conditions, camera viewpoints, and product-related 
issues (Hütten et al., 2024). Scrap reduction can be 
most effectively achieved if there is a direct 
correlation between detected defects and the 
preceding causes of defects. (K et al., 2022) While 
end-of-line inspection can be used for non-
conforming product detection, it may not be effective 
in reducing repetitive defects. (Quality Assurance in 
Auto Manufacturing: A Guide to End-of-Line 
Inspection, 2024) Higher KPI improvements can be 
achieved through the integration of vision-based 
inspection results with process variables and sensor 
signatures for the identification of the process 
window in which defects occurred and subsequent 
adjustments for improvement. (Industry 4.0: 
Capturing Value at Scale in Discrete Manufacturing 
with Industry 4.0, 2023) A good example of 
multimodal quality prediction can be applied in 



 

Syed Hassan, Glob Acad J Econ Buss; Vol-8, Iss-1 (Nov-Dec 2026): 34-42 

© 2026: Global Academic Journal’s Research Consortium (GAJRC)                                                                                                                 38 

 

additive manufacturing processes, in which 
multimodal sensor signatures can be correlated with 
the final product quality outcome. These correlations 
can be used for taking proactive steps for 
improvement in product quality by stopping the print 
process, adjusting print parameters, or changing 
scanning patterns for reduction in rework and scrap 
(Petrich et al., 2021). In this example of quality 
prediction improvement, outcome-oriented signals 
are used in conjunction with images, while images of 
the mechanism are used in conjunction with process 
variables. Scrap reduction from a production logistics 
point of view translates into a consistent production 
schedule with reduced expediting requirements and 
reduced downstream costs for returns, rework 
queues, and material handling. (APQC, 2018) In this 
respect, scrap reduction is a quality improvement 
objective and should be considered in the broader 
field of quality engineering. (Dewa & Makua, 2024) 
 
5.6 Energy Efficiency Analytics and 
Sustainability-Aware Optimization 

Energy efficiency is a concept that is 
understood to have a connection to organizational 
costs and sustainability. (Enhancing Corporate 
Sustainability and Competitiveness through Energy 
Efficiency: A Literature Review, 2024, pp. 266-271) 
From a review of literature, it is understood that 
energy efficiency can be optimized through 
monitoring, process planning, and optimization of 
machines and systems. At the system level, it is 
understood that energy efficiency optimization can 
be achieved through energy-aware scheduling, in 
which it is possible to reduce peak demands and align 
energy efficiency to off-peak periods. (Mathew et al., 
2020) 

 
The level of organizational maturity is also 

understood to have a significant impact on 
organizational performance. (Development of a 
digital maturity model for Industry 4.0 based on the 
technology-organization-environment framework, 
2023) In terms of energy efficiency optimization for 
industrial manufacturing processes, it is understood 
that energy efficiency capability maturity can be 
described as having stages from basic visibility to 
prediction and adaptability. Therefore, it can also be 
understood that energy efficiency optimization can 
be described in terms of organizational performance, 
such as adherence to organizational standards. 

 
The optimization methods for energy 

efficiency optimization can also be described as 
having stages from simple heuristics to 
reinforcement learning. In reinforcement learning 
optimization for production systems, it is understood 
that safety and constraints must be satisfied to use 
the optimization method, as reviewed in the 
literature. In terms of energy efficiency optimization, 

it is understood that constraints must be satisfied to 
avoid compromising product quality and 
organizational commitment. Another area of further 
research is that of sustainability-aware multi-
objective optimization, where trade-offs are managed 
for throughput, quality, and energy. There are many 
choices that have a coupled effect on an industrial 
process. For example, a process that has a higher 
throughput may have a higher defect rate and a 
higher energy intensity, or a process that has a higher 
focus on energy savings may have a negative impact 
on throughput reliability. Multimodal monitoring 
provides this level of trade-off management. It is 
necessary that there be optimization methods that 
have constraints, uncertainty quantification, and 
results that have physical units. 
 
5.7 Measurement and Evaluation in Operations 
Contexts 

There has been a disconnect between the 
measurement and evaluation metrics used in the 
academic context and the value they deliver. For 
example, the F1-score of the detector does not 
correspond to the probability of a plant, and the 
reduction in downtime depends on the detector's 
value, which corresponds to the volume of alerts, 
investigations, and the effectiveness of the 
intervention. Also, the vision model's accuracy does 
not correspond to the reduction in scrap, since the 
routing of rework could be capacity-constrained or 
detection could be too late. The value-aligned 
measurement and evaluation metrics correspond to 
the measurement and evaluation of the detection 
lead time, or the value of detection, which is the time 
before a failure occurs or a defect occurs. Also, 
actionability, or the value of actionability, 
corresponds to the feasibility of the intervention. 
Adoption rate, or the value of actionability, is the 
percentage of actions performed. Finally, outcome 
delta corresponds to the outcome's value. Temporal 
validation is an important component of the 
measurement and evaluation process. For example, 
random train-test validation is not optimal when the 
data are correlated. This could lead to an increase in 
the metrics because of the correlated data. For 
example, time-based validation, or "rolling origin 
evaluation," could be more valuable to operations, as 
they may have changed over time (Tang et al., 2023). 
Also, the missing modality scenario could be an 
important consideration for the multimodal system 
since the cameras could be down. 
 
Temporal Validation 

This will also ensure standardized process. 
This will yield concrete results on the solution's 
feasibility. This will also meet the requirements of Q1 
journals regarding the relevance of the research. The 
results regarding performance on transfer or 
calibration will be more relevant. 
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5.8 Cybersecurity, Data Ethics, and Trustworthy 
Deployment 

Industrial analytics is used in safety- and 
quality-critical applications. There is a need to 
address the cybersecurity challenges like secure 
ingestion, authentication, OT/IT segmentation, 
access control, and auditing. This will be similar to the 
best practices of governance, as discussed in the 
literature on digital twin and Industry 4.0 (He & Bai, 
2021). Another critical consideration for industrial 
analytics will be human monitoring. This will be a 
closed-loop system. The interface will have to be 
human-centric. There will have to be a mechanism for 
explanation and escalation. There will have to be a 
mechanism for logging the decision. This will give a 
positive feedback loop. This will not only improve the 
model but will also help build trust in the model by 
making it accountable. This will give a framework for 
learning from the data. Model risk management will 
have to be the need of the hour. This will help reduce 
the risk of degradation. This will include monitoring, 
degradation detection, and rollback. Degradation will 
have a silent impact on the operational domain. This 
will lead to missed delivery commitments and a 
negative impact on the corporate brand. 
 
5.9 Integration with Lean, TPM, and Continuous 
Improvement 

Multimodal industrial analytics can be 
integrated with existing operational excellence 
initiatives such as Lean, TPM, and Six Sigma. Lean 
initiatives focus on waste reduction and process 
stability. TPM initiatives focus on machine reliability 
and autonomous machines. Six Sigma initiatives focus 
on variation reduction and defects. Industrial 
analytics can be integrated with all of these initiatives 

to improve their effectiveness by providing a faster 
feedback cycle for all of these initiatives, measuring 
loss patterns, and identifying areas for improvement 
to maximize effectiveness. 

 
For example, TPM initiatives can be 

integrated with industrial analytics to analyze 
chronic losses such as micro-stopages, speed losses, 
and unscheduled downtime. Using a time series 
analysis tool, patterns of micro-stopages can be 
analyzed and correlated with corresponding 
contextual triggers from the logs (changeovers, 
material lots, etc., or shifts). This can be part of a 
Kaizen improvement initiative, and hypotheses can 
be tested and changes in loss distribution tracked 
instead of merely eyeballing it. Vision analytics can 
also be used to enable a similar DMAIC analysis 
process for TPM initiatives by analyzing defects using 
heatmaps and clusters. It can be further focused on 
potential causes of defects by correlating with 
potential causes, signals, and recipe information. 
From a logistical perspective, reducing defects can 
also reduce rework queues and expedite, thus 
reducing lead time and its variability. To ensure that 
this is a continuing benefit and to ensure that 
standard work and governance are put into place, a 
successful closed-loop program must be 
implemented. This is consistent with the overall 
theme of this review: that pipeline and workflow 
considerations are as important as model 
considerations. 
 
6. Consolidated Evidence Table 

Table 1 provides an evidence map linking 
modality combinations to analytics tasks, decision 
integration mechanisms, and KPI pathways.

 
Table 1: Evidence map for multimodal data analytics and KPI outcomes in production logistics contexts. 

Modality 
mix 

Typical data sources Primary analytics 
tasks 

Decision 
integration 

KPI pathway Representative 
sources (2020–
2025) 

Time-series Vibration/current/temp; 
PLC/SCADA 

Anomaly detection; 
PdM 

Alerts→work 
orders; 
maintenance 
planning 

↑Availability→↑OEE Zamanzadeh 
Darban et al., 
(2024); Mohan et 
al., (2021) 

Images Inline cameras; vision 
stations 

Defect 
detection/segmentation 

Quality gate; 
rework routing 

↓Scrap→↑Quality→↑OEE Hütten et al., 
(2024) 

Event logs MES/ERP events; 
alarms; recipes 

Process mining; 
bottleneck discovery 

Dispatching rules; 
flow redesign 

↑Performance→↑OEE; 
↑lead-time stability 

Lee et al., (2025) 

Time-series 
+ logs 

Sensors + state/recipe 
context 

Contextual anomaly 
detection 

Context-aware 
thresholds 

↓False alarms→higher 
action rate 

Zamanzadeh 
Darban et al., 
(2024) 

Images + 
logs 

Vision + lot/recipe/shift 
metadata 

Traceability & defect 
association 

Containment; 
supplier/recipe 
actions 

↓Repeat defects→↓scrap Moiceanu et al., 
(2022) 

Time-series 
+ images 

Sensors + vision Fusion quality 
prediction 

Early stop; 
parameter 
recommendation 

↓Scrap & 
↓downtime→↑OEE 

Petrich et al., 
(2021) 

Full 
multimodal 

Signals + vision + events Fusion + optimization Closed-loop 
recommendations 

Joint OEE/scrap/energy 
gains 

Zhao et al., 
(2024); He & Bai 
(2021) 

Energy-
focused 
time-series 

Meters; utilities; 
machine power 

Forecasting; peak 
detection 

Energy-aware 
scheduling 

↓kWh/unit; ↓peaks Batouta et al., 
(2023); Schmitt 
(2025) 
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7. Proposed Framework and Implementation 
Checklist 
As mentioned above, the proposed framework is 
based on the five-tier framework, and the same has 
been depicted in the figure below: 

(L1) Capture and Semantics: Hierarchy of 
Assets, Part/Lot Identification, Event 
Definition; 
(L2) Data Engineering and Governance: 
Quality Constraints, Data Provenance, 
Feature Store, Embedding Store; 
(L3) Modeling and Validation: Time-Based 
Splitting, Robustness Analysis, Edge/Cloud 
Partitioning; 
(L4) Decision Integration: Workflow, 
Ownership, Override, Safety Restrictions; 
(L5) KPI Accountability: Measurement 
Window, Outcome Logging, Continuous 
Improvement Governance. 

 
Implementation Checklist 

1) Identify 3-5 KPI pathways with strong 
ownership: Maintenance, Quality, 
Scheduling, Energy. 

2) Start with findings that include strong 
actions: Quality Hold, Work Order. 

3) Start with a pilot, but design identifiers for 
scalability; 

4) Track: Drift, Alerts, Action Rates, Accuracy; 
5) Record: Decisions: Model Version, Action, 

Outcome; 
6) Explore: Multi-objective Optimization after 

Trust in Single-Objective Workflow; 
7) Develop procedures: Escalate/Rollback 

Decisions based on Unexpected Model 
Behavior. 

 

8. DISCUSSION AND FUTURE RESEARCH 
AGENDA 

As mentioned above, the evidence provided 
above is sufficient to prove the validity of the 
proposed multimodal analytics approach, which 
would ensure the stability and sustainability of the 
system. (Ismail et al., 2025) As mentioned above, the 
proposed approach is based on the KPIs outlined for 
the workflow and governance. However, there is a lot 
of content, especially in the domain of Q1 logistics 
and operations research. (Mohan et al., 2025) 

 
Gap 1 - Causal attribution of KPI 

improvements. From the research on this topic, it has 
been observed that KPI improvements have been 
examined. However, in most research on this topic, it 
has been observed that variables such as product mix, 
personnel, and/or process improvements have not 
been considered. Thus, if research is to be carried out 
on this topic in the future, it is important that quasi-
experimental studies are conducted to provide 
bounds on the KPI improvements. 

Gap 2 - Cross-site generalization/domain 
shift. Based on the research on this topic, it has been 
observed that the models have not generalized well 
across business segments/plants. Thus, if research is 
to be carried out on this topic in the future, it is 
important that representation, calibration, 
uncertainty estimation, model evaluation with 
missing modalities, updates, safety, and timeliness 
are considered. This particular area of research can 
be carried out on the use of digital twins for KPI 
progress research, as suggested by He and Bai (2021) 
and Soori et al., (2023). Most importantly, if research 
is to be carried out on this topic, an evaluation of data 
management using digital twins is essential. 

 
Gap 3 - Sustainability-Aware Multi-Objective 

Optimization. Business process optimization, with a 
focus on productivity, quality, and sustainability, 
should be recognized as a research gap. (Liao et al., 
2025) Therefore, if research is to be conducted on 
this problem, it is imperative to consider 
reinforcement learning, as Panzer et al., (2022) and 
Alginahi et al., (2025) have proposed. Most 
importantly, in case research is to be conducted on 
this problem, it is imperative to consider safety, 
interpretation of recommendations, and satisfaction 
of constraints. Research can be conducted on 
research on the application of digital twins for 
research on this problem. Additionally, it is 
imperative to consider the tariff structure included in 
the models used in the evaluation of energy 
efficiency. (Khan et al., 2021) 

 
Gap 4 - Value Aligned Evaluation and 

Reporting. It is imperative to consider various 
variables in case research work is to be conducted in 
the future on the research problem of KPIs and how 
it can be improved, for example, academic variables 
as well as various operational variables such as avoid 
downtime minutes, scrap kilograms, and/or 
kilowatt-hours/unit. Additionally, it is imperative to 
develop a standard reporting form. 
 
9. Limitations 

There are a number of limitations that are 
related to the research work. For example, the 
research work that has been written regarding this 
particular industry has not been based on any data. 
For example, the research work that has not had any 
negative findings has not been published. 

 
Secondly, there is unification at the domain 

level. For example, "maintenance, quality, and 
energy." There is a difference regarding the 
evaluation culture and reporting. The statement is 
true from the point of view of the production logistics. 
However, the information is "hidden" in the domain. 
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Thirdly, there is unification based on 
literature from 2020 to 2025. However, there are a 
few pre-2020 standards and bases for TPM as well as 
classical control. (Mouhib et al., 2025). Lastly, 
although not all of the above papers are particularly 
useful with regard to providing any information on 
volumes of alerts, decision rights, and deltas of KPIs, 
the above overview is not really about a 'best model' 
anyway; although, it would be highly desirable that 
the above studies be more consistent with the 
standards. 
 

10. CONCLUSION 
In conclusion, high-volume time series, 

images, and process logs represent a valuable source 
for improving production logistics results. In the 
above sections, we have reviewed the research on 
multimodal fusion for optimizing OEE, reducing 
waste, and maximizing EE for the period between 
2020 and 2025. To apply the results successfully in a 
real-world scenario, all the research emphasizes the 
significance of governance-first architecture, proper 
fusion strategies for the decision horizon, and work 
flows for converting predictions into accountable 
actions. (Anumula, 2025) 
 
Appendix A: Practical Taxonomy of Use Cases and 
Decision Horizons 

To assist in the application of the reviewed 
research in a real-world scenario, Table A1 is a 
conceptual table on a practical taxonomy for use 
cases and decision horizons. The second-level 
horizons are for safety and machine protection. These 
cases require conservative detection. Minute-to-hour 
horizons are for process stabilization and quality 
prevention. These cases can be reviewed by 
engineers. Day-to-week horizons are for planning 
cases such as scheduling, EE production, and 
workforce allocation. (Liu et al., 2025) In intervention 
types, we can have: (i) automatic protective actions 
such as go-stop or divert actions with strict 
intervention rules; (ii) operator intervention types 
such as prompts or checklists; (iii) engineering 
intervention types such as recommendations for 
setpoints or root causes; and (iv) planning 
intervention types such as scheduling or batching 
rules. (Saretzky et al., 2025) Multimodal fusion can be 
more acceptable for recommendation and planning 
intervention types. Conservative designs can be used 
for automatic protective actions. (Huang et al., 2025) 
With regard to logistics, short horizons can have a 
lower number of availability losses. Long horizons 
can have lower variability and a higher predictability 
rate regarding performance and lead time. 
 
Appendix B: 

Reporting Template Recommended for Q1 
Logistics/Operations Papers To facilitate greater 
study-to-study comparability and increase their 

managerial relevance, we strongly recommend that a 
minimum set of operational details be reported. This 
will include: 
 
Context: Industry, asset type, production mode 
Modalities and sampling frequency 
 
Alignment Method: Part ID, station trigger, 
windowing 
 
Validation Method: Time-based splitting, external 
validation 
 
Operational Integration: Who receives alerts? What 
can they do with them? Escalation path? 
 
Measured Outcomes 

Downtime minutes saved, scrap kg saved, 
kWh saved/unit, impact on lead time distribution In 
addition to the above minimum details, we 
recommend that the following also be reported: Alert 
budget: How many alerts can we handle? 
 
Triage Cost 

How many alerts can we handle in a given 
time window? For example, a maintenance team may 
have capacity to investigate a certain number of 
alerts during a given shift. If a model produces more 
alerts than can be handled in that shift, it will be 
ignored regardless of how good it is. This will allow 
machine learning metrics to be converted to 
operational economics. (Bayram et al., 2025) Finally, 
we recommend reporting on governance aspects 
such as model versioning, drift detection, and model 
retraining. This is increasingly a requirement for 
high-quality journals given its significant impact on 
study sustainability of benefits. 
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