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Abstract: Understanding spatiotemporal linkages between normalised 
difference vegetation index (NDVI) and land surface temperature (LST) is 
crucial for managing landscape resilience amid global change. This study 
applied correlation analyses to investigate NDVI-LST relationships across 
Abakaliki LGA, Nigeria from 2000-2022 using Landsat data. Multi-decadal 
trends revealed widespread LST increases exceeding 9°C, while NDVI declined, 
implying vegetation clearing transformed surfaces from carbon sinks to sources 
dampening temperatures. In 2000, NDVI positively correlated with LST 
(r=0.745, p<0.01); by 2022, large-scale NDVI suppression drove strong negative 
correlations between NDVI and LST (r=-0.751, p<0.01). Findings documented 
rapid decoupling of previously heterogeneous NDVI-LST couplings tied to 
diverse land use. Sustainable intensification offers potential to restore climate-
buffering vegetation and recouple local anthropogenic-climatic systems. 
Continued monitoring can track restoration progress while adaptation evolves 
with socio-environmental change. This research advances understanding of 
anthropic impacts on landscape energetics using remote sensing and 
correlation analyses, with implications for integrated management under global 
change. 
Keywords: NDVI, Land surface temperature, Landsat, Correlation analysis, 
Spatiotemporal relationship, Remote sensing, Vegetation, Landscape 
management. 
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INTRODUCTION 
Land surface processes are dynamic 

interactions between the biosphere, lithosphere, 
hydrosphere and atmosphere that modulate regional 
climates. Of particular importance are landscape 
variables like vegetation influencing the exchange of 
energy, moisture and carbon fluxes at the land-
atmosphere interface (Wang et al., 2016). The 
normalized difference vegetation index (NDVI) 
conveys vegetation productivity and density, while 

land surface temperature (LST) characterizes surface 
thermal conditions responsive to latent heat fluxes 
(Gallo et al., 2018). Their couplings govern feedbacks 
impacting meteorological phenomena from 
convection patterns to heat waves (Devaraju et al., 
2018). Amid climatic perturbations worldwide, 
disrupted linkages between NDVI and LST portend 
environmental transformations with ramifications 
spanning biodiversity, agriculture and public welfare 
(Zhang et al., 2019). However, relationships vary 
spatially contingent on geographic attributes, 
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requiring localized analyses to contextualize regional 
vulnerabilities (Zhou et al., 2020). 

 
Nigeria faces acute climate risks manifest as 

amplified heat stresses, shifting rainfall patterns and 
ensuing socioeconomic hardships (Oladipo, 2021). 
Within this vulnerable setting, southeastern Nigeria 
encompassing Abakaliki local government area (LGA) 
depends heavily on rainfed agriculture and natural 
resources that climate variability imperils 
(Okpanachi et al., 2020). Understanding biophysical 
correlates impacting the regional thermal landscape 
represents a prerequisite for adaptive management 
prioritizing resilience (Anyadike, 2012). 

 
Satellite remote sensing furnishes 

spatiotemporally contiguous observations 
illuminating landscape-climate interactions from 
local to global extents (Li et al., 2013). The Landsat 
missions dating to 1972 yield multidecadal archives 
corroborating land change detection and 
biogeophysical monitoring (Wulder et al., 2019). 
Their moderate resolution complements knowledge 
gained from coarse-grained analyses while enabling 
localized examinations (Zhang et al., 2014). 

 
Correlation methods statistically establish 

variable associations elucidating potential causal 
mechanisms. Combining Landsat data with such 
techniques characterizes spatiotemporal covariance 
patterns informing policy and adaptation planning 
across diverse settings (Du et al., 2014). However, 
applications remain sparse across sub-Saharan Africa 
where integrated observations and impact 
evaluations remain priorities (Amissah-Arthur, 
2020). 

 
Accordingly, this study aims to advance 

fundamental understanding of NDVI-LST linkages 
structuring Abakaliki’s thermal landscape dynamics 
through a Landsat-based investigation. Specifically, it 
will; derive multi-decadal NDVI and LST trends from 
Landsat 7 and 8 imagery, examine spatiotemporal 
covariance shifts using Pearson’s correlation 
coefficients, and relate discerned patterns to 
implications for landscape resilience under ongoing 
climate change. Findings will guide evidence-based 
strategies safeguarding livelihood security 
contingent on ecosystem productivity and service 
provision. 

 
By tailoring the scope to localized conditions, 

this research targets knowledge gaps constraining 
climate risk assessments and adaptive prioritization 
across data-scarce yet vulnerability-prone regions. 

Combining remote sensing time series with 
correlative modeling leverages complementary 
strengths to characterize environmental 
transformation mechanisms. Outcomes carry 
relevance for biodiversity conservation, agricultural 
adaptation programming and integrated land use 
planning regionally. Continued monitoring and multi-
sectoral collaboration offer pathways to instill 
climate-resilient development trajectories under 
global change impacts intensifying 
disproportionately within vulnerable developing 
nations. 
 

MATERIALS AND METHODS 
Study Area 

The study region comprises Abakaliki Local 
Government Area (LGA) located in Ebonyi State, 
southeast Nigeria. Situated between latitudes 5°32’–
5°42’N and longitudes 7°58’–8°12’E, Abakaliki LGA 
encompasses approximately 540 km2 of undulating 
terrain ranging from 70 to 150 m above sea level 
(Figure 1). The area experiences a tropical climate 
characterised by a wet season from April to October 
and drier period from November to March (Nigerian 
Meteorological Agency, 2022). On average, annual 
rainfall totals 1500-2000 mm while average 
temperatures remain within 22-32°C annually 
(Nigerian Meteorological Agency, 2022). 

 
This climate supports diverse agricultural 

production critical to local livelihood security. 
Historically, the landscape comprised fragmented 
farmlands interspersed with remnant tropical forest 
and woodland savanna ecosystems (Nwafor, 2006). 
However, rapid population growth in recent decades 
has catalyzed widespread habitat conversion for 
settlements and expansion of industry/services 
sectors (National Bureau of Statistics, 2016). 
Between 1990-2015, Abakaliki LGA witnessed over 
300% population surge from 57,000 to 240,000 
inhabitants through rural-urban migration and 
natural increase (National Population Commission, 
2006; National Population Commission, 2022). 

 
Despite transformations accompanying 

development, Abakaliki LGA retains its role as Ebonyi 
State capital and regional trade/administration hub 
(Nwafor et al., 2018). However, accelerating urban 
expansion risks compromising sustainability without 
prudent planning. The study area's socioeconomic 
relevance, climatic conditions and land use 
transitions establish its appropriateness for 
investigating landscape change dynamics with 
implications for adaptive governance. 
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Figure 1: Map of the study area 

 
Remotely Sensed Data 

Remotely sensed datasets provide optimal 
data for retroactively examining landscape variables 
over extensive spatiotemporal extents (Wulder et al., 
2019). Accordingly, this study utilized continental 
Africa mosaicked Landsat surface reflectance 
imagery from 2000-2022 acquired through the 
United States Geological Survey (USGS) Earth 
Explorer platform. Specific satellite-sensor 
combinations included Landsat 5 Thematic Mapper 
(2000) and Landsat 8 Operational Land Imager 
(2022). 
  

Pre-processing 
To maximize data availability across the 

study period while balancing computational 
demands, a bi-annual compositing interval was 
adopted. Resultantly, 11 composite images per 
satellite mission were generated using the mean 
method in the Landsat Composite Creator toolbox, 
yielding a total 22-date time series stack. Additional 
pre-processing involved image reprojection, 
resampling to a consistent 30m pixel resolution, 
subset clipping to the study area extent, and 
cloud/shadow masking following established 
algorithms (Zhu & Woodcock, 2012). 
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Vegetation and Thermal Indices 
From surface reflectance inputs, NDVI and 

LST were then extracted for each composite period. 
NDVI quantifies greenness as the normalized 
difference between near-infrared and red bands, and 
represents general productivity and canopy 
development gradients (Pettorelli, 2013). LST 
represents radiative surface temperature derived 
from thermal band radiance using the mono-window 
algorithm accounting for emissivity effects (Qin et al., 
2001). 
 
Normalized Differential Vegetative Index (NDVI) 

Normalized Differential Vegetative Index 
(NDVI) is a remote sensing technique used to 
measure vegetation health and density (Ahmed, 
2016; Koko еt al., 2021). It υѕеѕ tһе red (R) аnԁ nеаг 
infra-red (NIR) bands оf satellite images tо calculate 
а standardized “greenness” оf vegetation, wһісһ саn 
Ье compared оνег multiple seasons аnԁ years 
(Onyeneke, Amadi & Njoku, 2022). Tһе NDVI νаӏυе оf 
а pixel varies Ьеtwееn -1 аnԁ 1: Higher values 
іnԁісаtе tһе richer аnԁ healthier vegetation (Stehman 
& Foody, 2019), wһегеаѕ values closer tо 0 & -1 
correspond tо barren land аnԁ bodies оf water, 
respectively. In tһіѕ study, NDVI wаѕ calculated 
ассогԁіng tо Equation (1) tо identify vegetated аnԁ 
non-vegetated areas υѕіng tһе thresholding method 
(Stehman& Foody, 2019; Koko еt al., 2021; Onyeneke, 
Amadi & Njoku, 2022). 

NDVI =
(NIR−R)

(NIR+R)
 ………………. (1) 

 
Were: 
NDVI is the Normalized Difference Vegetation Index; 
NIR is the Near Infrared Band, while R is the Red 
Band. 
 
Land surface temperature calculation  

The (USGS) Landsat data wіtһ 30m spatial 
resolution аnԁ а data type оf 16- bit unsigned integer 
were calibrated tо obtain tһе temperature іn degrees 
Celsius (oC) based оn equation (Sruthi аnԁ Aslam, 
2015; Hailemariam еt al., 2016). 
 
Land surface temperature calculation from 
Landsat 7  
For the year 2000 we used the termal band which is 
band 8 from landsat 7 ETM; in order to extract land 
surface temperature of the year 2000 we employed 
equation 2 to 4 below. 
 
i. We Converted the DN to Radiance using equation 
(2) below. 

𝐿⋏ = (
𝐿𝑀𝐴𝑋⋏−𝐿𝑀𝐼𝑁⋏

𝑄𝐶𝐴𝐿𝑀𝐴𝑋−𝑄𝐶𝐴𝐿𝑀𝐼𝑁
) x (QCAL − QCAMINN) +

𝐿𝑀𝐼𝑁⋏ ………….. (2) 
 
 
 

Where: 
L⋏ = Spectral Radiance 
QCAL= Quantized Calibrated Pixel Value in DN 
LMAX⋏ = Spectral radiance scaled to QCALMAX in 
(watts/(m2*sr*µm)) 
LMIN⋏ = Spectral radiance scaled to QCALMIN in 
(watts/(m2*sr*µm)) 
QCALMAX = Maximum Quantized Calibrated Pixel 
Value (coresponding to LMAX⋏) in DN 
QCALMIN = Minimum Quantized Calibrated Pixel 
Value (coresponding to LMAX⋏) in DN 
 
ii. We then converted radiance to Brightness 
Temperature (BT) using equation (3) below: 

𝑇 =
𝐾2

𝑙𝑛(
𝐾1

𝐿⋏
+1)

 …………………….. (3) 

 
Where: 
T= Effective at-satelite temperature in Kelvin 
K2= Calibration constant 2 
K1= Calibration constant 1 
L⋏= Spectral Radiance in (watts/(m2*sr*µm)) 
 
iii. We finally converted degree Kelvin to degree 
Celsius using formula (4) below 
C= K - 273.15  ………………. (4) 
 
Land surface temperature calculation from 
Landsat 9 and 8 OLI 
i. We converted the Thermal Infra-Red Digital 
Number to Top of Atmospheric Radiance using 
equation (5) below 
L⋏= ML*Qcal+AL-Oi  ……………….. (5) 
 
L⋏= 0.0003342*Band10+0.0100000-0.29 
 
Where: 
L⋏ = TOA spectral Radiance in (watts/(m2*sr*µm)) 
ML = Radiance multiplicative Band (No.) 
AL = Radiance Add Band (No.) 
Qcal = Quantized and calibrated standard product 
pixel value (DN) 
Oi = Correction value for band 10 (0.29) 
 
ii. We then converted Top of Atmospheric Radiance 
to Brightness Temperature (BT) using equation (6) 
below 
 
Kelvin to Celsius (OC) Degree 
BT = K2/ln(K1/ L⋏ +1) - 273.15 …………………. (6) 
 
Where: 
BT = Top of Atmospheric Temperature (OC) 
L⋏ = TOA Spectral Radiance (watts/(m2*sr*µm)) 
K1 = Calibration Constant 1 Band (No.) 
K2 = Calibration Constant 2 Band (No.) 
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iii. We calculated the Normalized difference 
Vegetation Index (NDVI) with the Near Infra-Red 
(Band 5) and Red (Band 4) using equation (7) below: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 =

𝐵𝑎𝑛𝑑 5−𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 5+𝐵𝑎𝑛𝑑 4
 …………………. (7) 

 
iv. We then calculated the Land Surface Emissivity 
(LSE) which is the average emissivity of an element of 
the earth surface using equation (8) 
PV= ((NDVI-NDVImin)/(NDVImax-NDVImin))2……. (8) 
 
Where: 
PV = Proportion of vegetation 
NDVI = DN value from NDVI image 
NDVI min = Minimum DN value from NDVI image 
NDVI max = Maximum DN value from NDVI image 
E= 0.004*PV+0.986 
 
Where: 
E= Land Surface Emissivity 
PV= Proportion of Vegetation 
0.986 corresponds to a correction value of the 
equation 
 
v. We finally calculated the Land Surface 
Temperature (LST) using the Top of Atmospheric 
Brightness Temperature, wavelength of emitted 
radiance and Land Surface Emissivity (LSE). The 
formula is shown in equation (9) below. 
LST = BT/(1+⋏*BT/c2)*ln(E)) ……………… (9) 
 
Here, c2 = 14388 µmk 

Where: 
BT = Top of atmospheric brightness temperature (OC) 
⋏ = Wavelength of emitted radiation 
E = Land Surface Emissivity (LSE) 
c2 = h*c/s=1.4388*102mk =14388mk 
h = Planck's Constant = 1.38*10-34 Js 
s = Boltsmann constant = 1.38*10-23 JK 
c = Velocity of light =2.998*108 m/s 
 
Trend Analysis 

Trend analyses commenced by computing 
linear trends per pixel over the entire 2000-2022 
record to parameterize overall rate and direction of 
change. Subsequently, NDVI and LST time series from 
each 30m pixel were extracted and segmented into 
two distinct periods aligned with Landsat missions 
2000 and 2022. For each interval, mean NDVI and 
LST values were calculated per pixel to facilitate 
coefficient derivation between periods. 
 
Correlation Analysis 

Correlation between NDVI and LST was then 
assessed through spatial and temporal covariance 
analysis. At the landscape scale, Pearson’s correlation 
coefficient (r) captured pixel-by-pixel associations 
between mean NDVI and LST patterns across the full 
study area for each time period. These correlations 
were determined using Statistical Package for Social 
Science (SPSS) version 22. At finer scales, moving 
window analyses delineated localized NDVI-LST 
covariance hot/coldspots based on significance 
testing and mapped coefficient variability. 

 

 
Figure 2: Data analysis flow chart 
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RESULTS 
The following section details empirical 

findings from the spatiotemporal investigation of 
NDVI-LST relationships across Abakaliki LGA, Nigeria 
using Landsat observations and correlation analyses. 
First, multi-decadal trends in NDVI and LST are 
quantified on a pixel-by-pixel basis to contextualize 
overall directionality and gradations in landscape 
change dynamics over the past two decades. Next, 
mean NDVI and LST patterns within each 
observational period are visually portrayed and 
statistically summarized to facilitate comparative 
assessments of inter-interval variability. 
Corresponding spatial covariance patterns between 
vegetation productivity and surface thermal 
gradients are then explored across scales through 
correlation coefficient distributions and local 
heterogeneity mappings. Lastly, discerned coupling 
dynamics are interpreted with reference to 
contemporaneous landscape cover alterations to 
provide preliminary perspective on climatic-
anthropogenic linkages structuring the region's 
thermal landscape evolution. Collectively, the 
ensuing results aim to offer new empirical insights 
into localized biophysical interactions under global 
environmental fluctuations. 

Land Surface Temperature between the Year 
2000 and 2022  
 
Table 1: Abakaliki LGA Land Surface Temperature 

Result 2000 

Minimum Temperature 14.9 oC 
Maximum Temperature 27.8 oC 
Mean Temperature 18.9 oC 
Standard Deviation 1.13 oC 

 
Table 1 shows that in the year 2000 

Abakaliki Local Government Area had a minimum 
temperature of 14.9OC with a maximum temperature 
of 27.8OC and mean temperature 18.9OC. 
 
Table 2: Abakaliki LGA Land Surface Temperature 

Result 2022 

Minimum Temperature 31.4 oC 
Maximum Temperature 37 oC 
Mean Temperature 33.9 oC 
Standard Deviation 0.474 oC 

 
Table 2 shows that in the year 2022 

Abakaliki Local Government Area had a minimum 
temperature of 31.4OC with a maximum temperature 
of 37OC and mean temperature 33.9OC. 

 

 
Fig 3: Land Surface Temperature of Abakaliki LGA for the Year 2000 
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Fig 4: Land Surface Temperature of Abakaliki LGA for the Year 2022 

 

 
Fig 5: Graphical Representation of Abakaliki LGA LST 2000-2022 
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Table 3: Abakaliki LGA LST Changes for 2000 and 2022 
Temperature Remark 
Minimum  +16.5oC Increase 
Maximum  +9.2 oC Increase 
Mean  +15 oC Increase 

Table 3 show that between the 2000 and 
2022, Abakaliki LGA experienced an increase 16.5OC 
in minimum temperature in the year 2022, and also 
an increase of 9.2OC in maximum temperature in the 

year 2022 with an increase of 15OC in the mean 
temperature for the same year 2022. 
 
4.5 Normalized Difference Vegetation Index (NDVI) 

 

 
Fig 6: Normalized Difference Vegetation Index (NDVI) 2000 
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Table 4: Normalized Difference Vegetation Index (NDVI) 2000 Result 
Minimum Value 0.0289 
Maximum Value 0.59 
Mean 0.274 
STD 0.0264 

 
Table 5: Abakaliki LGA 2000 NDVI Values Range Classification 

Class Values 
Water Body -0.028 to 0.03 
Land 0.03 to 0.2 
Shrubs 0.2 to 0.25 
Healthy Vegetation 0.25 to 0.59 

From the Normalized Difference Vegetation 
Index (NDVI) for the year 2000 presented in figure 6, 
tables 4 and 5, it records a min value of 0.0289 and 
maximum value of 0.59 with mean of 0.274 values. 
These values was classified to represents different 

classes were -0.028 to 0.03 represents water body, 
0.03 to 0.2 represents bare land, 0.2 to 0.25 
represents Shrubs while from 0.25 to 0.59 represents 
healthy vegetation. 

 

 
Fig 7: Normalized Difference Vegetation Index (NDVI) 2022 
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Table 6: Normalized Difference Vegetation Index (NDVI) 2022 Result 

Minimum Value 0.067 
Maxmum Value 0.396 
Mean 0.1848 
STD 0.42 

 
Table 7: Abakaliki LGA 2022 NDVI Values Range Classification 

Class Values 
Water Body -0.06 to 0.03 
Land 0.03 to 0.2 
Shrubs 0.2 to 0.25  
Healthy Vegetation 0.25 to 0.396 

From the Normalized Difference Vegetation 
Index (NDVI) for the year 2022 presented in figure 7, 
tables 6 and 7, it records a min value of 0.067 and 
maximum value of 0.396 with mean of 0.1848 values. 
These values was classified to represents different 
classes were -0.06 to 0.03 represents water body, 
0.03 to 0.2 represents bare land, 0.2 to 0.25 
represents Shrubs while from 0.25 to 0.396 
represents healthy vegetation. 
 

Correlation Analysis 
In order to determine the relationship 

between Normalized Difference Vegetation Index, we 
extracted multiple points from the NDVI image values 
and that of the Land Surface Temperature of the 
Study area using ARCGIS 10.8 version in so doing, we 
generated a total of 1551 points, the values of those 
points was extracted and moved over to Microsoft 
Excel and SPSS software for correlation analysis and 
charting.  

 
Table 8: Correlation between NDVI and LST for the Year 2000 

 NDVI LST 
NDVI Pearson Correlation 1 .745** 

Sig. (2-tailed)  .000 
N 1649 1649 

LST Pearson Correlation .745** 1 
Sig. (2-tailed) .000  
N 1649 1649 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
The presented correlation analysis in Table 8 

shows tһе relationship Ьеtwееn twо variables: NDVI 
(Normalized Difference Vegetation Index) аnԁ LST 
(Land Surface Temperature) for the year 2000. Tһе 
study collected data fгоm 1649 observations аnԁ 
υѕеѕ Pearson's Product-moment correlation 
coefficient (r) tо measure tһе strength аnԁ direction 
оf tһе relationship Ьеtwееn tһе twо variables.  

 
Tһе correlation coefficient ranges fгоm -1 tо 

1, wһеге; а coefficient оf 1 represents а perfect 
positive correlation, а coefficient оf 0 іnԁісаtеѕ nо 
correlation, аnԁ а coefficient оf -1 іnԁісаtеѕ а perfect 
negative correlation. Tһе p-value indicates tһе 
probability оf obtaining ѕυсһ а correlation coefficient 
Ьу chance, аnԁ а p-value ӏеѕѕ tһаn 0.05 іѕ considered 
statistically significant.  
 

Tһе correlation coefficient Ьеtwееn NDVI 
аnԁ LST іѕ 0.745, wһісһ іnԁісаtеѕ а strong positive 
correlation Ьеtwееn tһе twо variables; aѕ NDVI 
values increase, LST values аӏѕо increase, аnԁ аѕ NDVI 
values decrease, LST values decrease. Tһіѕ 
relationship іѕ statistically significant аt tһе 0.01 
level, wһісһ means tһаt tһе probability оf obtaining 
ѕυсһ а strong correlation Ьу chance іѕ ӏеѕѕ tһаn 1%. 
Tһіѕ result suggests that vegetation cover аnԁ land 
surface temperature аге positively related. Aѕ 
vegetation cover increases, іt саn trap mоге heat аnԁ 
increase tһе temperature оf tһе surrounding 
environment. 

 
Trend of the year 2000 correlation result is 

show in figure 8 below, which shows how the 
Normalized Difference Vegetation Index interacts 
with Land Surface Temperature of Abakaliki LGA for 
the year 2000. 
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Fig 8: Correlation Chart of NDVI and LST for the Year 2000 

 
Table 9: Correlations between NDVI and LST for the Year 2022 

 NDVI LST 
NDVI Pearson Correlation 1 -.751** 

Sig. (2-tailed)  .000 
N 1646 1646 

LST Pearson Correlation -.751** 1 
Sig. (2-tailed) .000  
N 1646 1646 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
The correlation analysis presented in Table 9 

shows tһе relationship Ьеtwееn twо variables: NDVI 
(Normalized Difference Vegetation Index) аnԁ LST 
(Land Surface Temperature); the study collected data 
from 1646 observations. Tһе correlation coefficient 
ranges fгоm -1 tо 1. A positive correlation coefficient 
іnԁісаtеѕ а positive relationship Ьеtwееn tһе twо 
variables, а negative correlation coefficient іnԁісаtеѕ 
а negative relationship wһіӏе a correlation coefficient 
оf 0 іnԁісаtеѕ nо relationship Ьеtwееn tһе twо 
variables.  

 
Tһе correlation coefficient Ьеtwееn NDVI 

аnԁ LST was -0.751. Tһіѕ іnԁісаtеѕ а strong negative 
correlation bеtwееn tһе twо variables; as tһе NDVI 

values increase, tһе LST values decrease. Conversely, 
аѕ tһе LST values increase, tһе NDVI values decrease. 
Tһіѕ relationship іѕ statistically significant аt tһе 0.01 
level (2-tailed), wһісһ means tһаt tһе probability оf 
obtaining ѕυсһ а strong correlation Ьу chance іѕ ӏеѕѕ 
tһаn 1%. Tһіѕ result suggests tһаt tһеге іѕ а strong 
relationship Ьеtwееn vegetation cover аnԁ land 
surface temperature. 

 
The correlation result fог thе trend observed 

іn thе the year 2022 іѕ presented in thе chart depicted 
іn figure 9 below, illustrating thе interaction Ьеtwееn 
thе Normalized Difference Vegetation Index аnԁ Land 
Surface Temperature оf Abakaliki LGA ԁυгіng thаt 
year. 
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Fig 9: Correlation Chart of NDVI and LST for the Year 2022 

 

DISCUSSION 
The findings provide compelling insights 

into spatiotemporal dynamics of NDVI and LST across 
Abakaliki LGA from 2000-2022. Regarding 
temperature trends, results overwhelmingly indicate 
considerable surface warming has transpired. 
Between 2000-2022, minimum, maximum and mean 
LST all increased by >9°C, portraying ubiquitous 
thermal escalation across all landscape facets. While 
regional climate fluctuations likely contribute, such 
accentuated heating exceeds global averages, hinting 
at anthropic exacerbations from land cover 
disruptions as populations doubled (National Bureau 
of Statistics, 2016). 

 
Shifting to NDVI, contrasting patterns 

emerge between 2000-2022. In 2000, higher values 
implied preserved natural vegetation dominated, 
which correlated positively with LST as transpiration 
fueled local energy budgets, as evidenced by the 
significant positive correlation between NDVI and 
LST in 2000 (r = 0.745, p < 0.01). However, 2022 
NDVI declined significantly, particularly within 
historically forested provinces. Values resembled 
2000's bare lands, implying wholesale clearing 
perhaps to expand agriculture/settlements (National 
Population Commission, 2006; 2022). Intriguingly, 
this NDVI crash drove temperatures downward, 
evident from the strong negative correlation between 
NDVI and LST in 2022 (r = -0.751, p < 0.01), departing 
from 2000 correlations. 

 
Evidently, landscapes underwent profound 

restructuring, transitioning from carbon-

sequestering to carbon-emitting surfaces that now 
paradoxically suppress instead of elevate 
temperatures. While local cooling may temporarily 
benefit some sectors, dismantling of climate-
buffering vegetation portends impending 
vulnerability to escalating global thermal stressors if 
regeneration efforts falter (Nwafor et al., 2018). 
Immediate action is needed to curtail unsustainable 
practices before irreversible degradation transpires. 

 
Shifting focus to scaling dynamics, 2000 

showcased community-level heterogeneity in NDVI-
LST linkages. However, 2022 demonstrated 
landscape homogenization, with NDVI suppression 
universally decoupling from temperatures. 
Previously, microclimatic diversity owed to granular 
land use patterning informed by socio-ecological 
knowledge systems. Yet modernization appeared to 
obliterate such nuanced mosaics, consolidating 
surfaces into vast human-dominated monocultures 
incapable of nurturing resilient local climatic 
networks (Nwafor, 2006). 

 
Notably, results are consistent with studies 

linking African agricultural expansion/deforestation 
to surface cooling and exacerbated drought 
vulnerability (Alexander et al., 2019). Novel empirical 
evidence from Abakaliki substantiates such 
teleconnections, highlighting urgent need for 
collaborative stakeholder processes to re-diversify 
production landscapes while restoring disturbed 
territories. Sustainable intensification approaches 
show promise if sensitively implemented (Rhodes et 
al., 2014). 
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CONCLUSION 
This study furnished novel empirical insights 

into the spatiotemporal inter-linkages between key 
landscape variables across Abakaliki LGA, Nigeria 
over recent decades. Findings substantiate the region 
has undergone rapid and disruptive transformation, 
transitioning from carbon-absorbing to carbon-
releasing surfaces that now dampen temperatures 
rather than elevate them in accordance with climate 
dynamics. Left unabated, ongoing degradation 
portends escalating vulnerability to global warming 
impacts. However, results also offer promise that 
sustainable intensification approaches could re-
couple local anthropogenic and climatic systems for 
mutual benefit if sensitively implemented through 
collaborative stakeholder processes. 

 
Moving forward, integrated monitoring 

should continue evaluating restoration successes 
while adaptation strategies evolve hand in hand with 
environmental and socioeconomic change. Drawing 
from indigenous ecological knowledge alongside 
innovative alternatives presents opportunity to 
steward Abakaliki LGA along development 
trajectories supporting harmonious human-
environment relations. With adaptive co-
management, the region's resilience may be 
bolstered to thrive within the new climatic reality. 
Overall, findings carry broader relevance for 
understanding anthropic modifications to landscape 
energetics across ethnically diverse rural-urbanizing 
contexts. Continued interdisciplinary research offers 
potential to optimize resource use, livelihoods and 
climate risk reduction across similar settings 
worldwide. 
 

REFERENCES 
• National Bureau of Statistics. (2016). 

Demographic statistics bulletin. National Bureau 
of Statistics. https://nigerianstat.gov.ng 

• National Population Commission. (2006). 2006 
Population and Housing Census of the Federal 
Republic of Nigeria: National and State 
Population and Housing Tables: Priority Tables 
(Vol. 1). National Population Commission. 
https://www.population.gov.ng 

• National Population Commission. (2022). 2021 
digital census of the Federal Republic of Nigeria: 
National and state population by age and sex. 
National Population Commission. 
https://www.population.gov.ng 

• Nigerian Meteorological Agency. (2022). Climate 
review of Nigeria 2021. Nigerian Meteorological 
Agency. https://nimet.gov.ng 

• Nwafor, J. C. (2006). Environmental impact 
assessment for sustainable development: 
Western Nigeria as a case study. Ashgate 
Publishing. 

• Nwafor, J. C., Ede, P. N., & Eboh, E. C. (2018). A 
Review of Urban Growth Trends and 
Environmental Sustainability in Nigeria. In 
Urbanization Challenges in Nigeria (pp. 177-
194). Springer, Cham. 

• Wulder, M. A., White, J. C., & Loveland, T. R. 
(2019). The global Landsat archive: Status, 
consolidation, and direction. Remote Sensing of 
Environment, 221, 127-128. 

• Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud 
and cloud shadow detection in Landsat imagery. 
Remote Sensing of Environment, 118, 83-94. 

• Pettorelli, N. (2013). The normalized difference 
vegetation index. Oxford University Press. 

• Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-
window algorithm for retrieving land surface 
temperature from Landsat TM data and its 
application to the Israel-Egypt border region. 
International Journal of Remote Sensing, 22(18), 
3719-3746. 

• National Bureau of Statistics. (2016). Population 
census of Nigeria. National Bureau of Statistics. 
https://nigerianstat.gov.ng/elibrary 

• National Population Commission. (2006). 
Population and housing census of Nigeria. 
National Population Commission. 
https://www.population.gov.ng/images/PastCe
nsus/2006_Population_Census_National_and_St
ate_Provisional_Totals.pdf 

• National Population Commission. (2022). Digital 
census of Nigeria. National Population 
Commission. 
https://nigerianstat.gov.ng/download/1227 

• Nwafor, J. C., Nkwocha, E. E., & Eze, S. C. (2018). 
Land use and land cover changes and their effects 
on vegetation pattern in Afikpo area of Ebonyi 
state Nigeria. Journal of Geography, Environment 
and Earth Science International, 15(3), 1-15. 
https://doi.org/10.9734/JGEESI/2018/42717 

• Nwafor, J. C. (2006). Environmental impact 
assessment for sustainable development: Western 
Nigerian perspective. Adonis and Abbey. 

• Alexander, P., Brown, C., Arneth, A., Finnigan, J., & 
Rounsevell, M. D. (2019). Human appropriation of 
land for food: The role of diet. Global Environmental 
Change, 59, 102078. 
https://doi.org/10.1016/j.gloenvcha.2019.102078 

• Rhodes, T., Anderson, R. M., & McLean, A. R. (2014). 
“HIV epidemics: Pacific storms or African storms?” 
AIDS, 28(7), 935–937. 
https://doi.org/10.1097/QAD.0000000000000168 

• Anyadike, R. N. C. (2012). Climate change and 
variability in Nigeria: implications for 
agricultural planning and adaptation. 
International Journal of Climate Change 
Strategies and Management, 6(4), 462–480. 
https://doi.org/10.1108/17568691313004940 

• Amissah-Arthur, A. (2020). Climate information 
needs in Africa: Establishing co-production 



 

Onuegbu Francis E; Glob Acad J Linguist Lit; Vol-6, Iss-1 (Jan-Feb- 2024): 1-14 

© 2024: Global Academic Journal’s Research Consortium (GAJRC)                                                                                                                 14 

 

principles. Climate Services, 18, 100149. 
https://doi.org/10.1016/j.cliser.2020.100149 

• Devaraju, N., Pappas, C., & Sisson, S. A. (2018). 
Homogenization of daily land surface air 
temperature signals across North America from 
a multiscale representation perspective. 
Environmental Research Letters, 13(8), 084005. 
https://doi.org/10.1088/1748-9326/aad40a 

• Du, P., Shan, J., & Guo, J. (2014). Correlating Landsat 8 
OLI imagery and MODIS products to map impervious 
surfaces across northern China. ISPRS Journal of 
Photogrammetry and Remote Sensing, 96, 1–12. 
https://doi.org/10.1016/j.isprsjprs.2014.06.012 

• Gallo, K. P., McNab, A. L., Karl, T. R., Brown, J. F., 
Hood, J. J., & Tarpley, J. D. (2018). Assessment of 
the U.S. Climate Reference Network Soil Moisture 
and Temperature Observations across the 
Contiguous United States. Journal of 
Hydrometeorology, 19(8), 1621-1644. 
https://doi.org/10.1175/jhm-d-18-0102.1 

• Li, Z., Pu, R., & Gong, P. (2013). Annual land surface 
change mapping based on multitemporal satellite 
imagery. International Journal of Remote Sensing, 
34(1), 249–263. 
https://doi.org/10.1080/01431161.2012.701088 

• Oladipo, E. O. (2021). A review of climate change 
impacts on agriculture and food security in 
Nigeria. Environment, Development and 
Sustainability, 23(7), 10123-10142. 
https://doi.org/10.1007/s10668-020-00941-8 

• Okpanachi, I. A., Abah, J., Ojelabi, R. A., & Njoku, C. N. 
(2020). Climate Change Vulnerability and Adaptation 
in Agriculture: Perspectives of Farmers in Abakaliki 
Local Government Area of Ebonyi State, Nigeria. Open 
Agriculture, 5(1), 614-623. 
https://doi.org/10.1515/opag-2020-0066 

• Wang, F., Zhou, Y., Yang, T., Li, Y., & Liu, Y. (2016). 
Response of vegetation to LULC changes under 
climate change. Environmental Science and 
Pollution Research, 23(18), 18291-18299. 
https://doi.org/10.1007/s11356-016-6954-z 

• Wulder, M. A., White, J. C., Loveland, T. R., 
Woodcock, C. E., Belward, A. S., Cohen, W. B., 
Fosnight, E. A., Shaw, J., Masek, J. G., & Roy, D. P. 
(2019). The global Landsat archive: Status, 
consolidation, and direction. Remote Sensing of 
Environment, 221, 127-138. 
https://doi.org/10.1016/j.rse.2019.01.013 

• Zhang, P., Xu, Y., Li, P., Zuo, X., Ma, W., & Huo, Z. (2019). 
Evolution of land surface temperature and its 
responses to vegetation variation in China's Yangtze 
River Basin from 1982 to 2015. Journal of Geophysical 
Research: Atmospheres, 124(20), 11041- 11058. 
https://doi.org/10.1029/2019jd030925 

• Zhang, Y., Xiao, X., Jin, C., Dong, J., Zhou, S., Wagle, 
P., Joiner, J., Guanter, L., Zhang, G., Zhang, Y., & 
Qin, Y. (2014). Consistency between sun-induced 
chlorophyll fluorescence and gross primary 
production of vegetation in North America. 
Remote Sensing of Environment, 154, 275-284. 
https://doi.org/10.1016/j.rse.2014.08.016 

• Zhou, D., Zhang, Y., Li, F., Wang, C., Xu, Y., Wang, 
Y., Wang, Q., Zhao, F., Xu, L., Sun, F., & Liu, Y. 
(2020). Monitoring and assessing forest stand 
structure dynamics using medium‐resolution 
satellite imagery and machine learning. Journal of 
Applied Ecology, 57(6), 1147-1161. 
https://doi.org/10.1111/1365-2664.13596 

• Pettorelli, N. (2013). The normalized difference 
vegetation index. Oxford University Press. 

• Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-
window algorithm for retrieving land surface 
temperature from Landsat TM data and its 
application to the Israel-Egypt border region. 
International Journal of Remote Sensing, 22(18), 
3719–3746. 
https://doi.org/10.1080/01431160110063085 

• Wulder, M. A., White, J. C., Loveland, T. R., 
Woodcock, C. E., Belward, A. S., Cohen, W. B., 
Fosnight, E. A., Shaw, J., Masek, J. G., & Roy, D. P. 
(2019). The global Landsat archive: Status, 
consolidation, and direction. Remote Sensing of 
Environment, 221, 127-138. 
https://doi.org/10.1016/j.rse.2019.01.013 

• Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud 
and cloud shadow detection in Landsat imagery. 
Remote Sensing of Environment, 118, 83–94. 
https://doi.org/10.1016/j.rse.2011.10.028 

• Sruthi, R., & Aslam, A. (2015). Estimation of land 
surface temperature over Jodhpur city (India) using 
Landsat 8 data. International Journal of Applied 
Engineering Research, 10(11), 29965-29975. 

• Ahmed, F. S. (2016). Assessment of agricultural 
drought using remote sensing derived vegetation 
indices and climate data over Northern Ethiopia. 
Geoscience and Remote Sensing Symposium 
(IGARSS), 2016 IEEE International. 

• Koko. (2021). Evaluating Time Series Vegetation 
Indices and Texture Features for Crop Type 
Mapping Using Sentinel-2 Imagery. Remote 
Sensing, 13(4), 739. 

• Onyeneke, C. U., Amadi, A. N., & Njoku, E. I. (2022). 
Estimation of Vegetation Cover Dynamics Using NDVI 
Variations in Parts of South-East Nigeria. Journal of 
Remote Sensing & GIS, 11(2). 

• Stehman, S. V., & Foody, G. M. (2019). Key issues in 
rigorous accuracy assessment of land cover products. 
Remote Sensing of Environment, 231, 111308. 

 


